


sult, model developers rarely leverage interpre-

tations and thus lack a robust understanding of

their system. The inflexibility of existing in-

terpretation codebases also burdens interpretabil-

ity researchers—they cannot easily evaluate their

methods on multiple models.

We present AllenNLP Interpret, an open-

source, extensible toolkit built on top of Al-

lenNLP (Gardner et al., 2018) for interpreting

NLP models. The toolkit makes it easy to apply

existing interpretation methods to new models, as

well as develop new interpretation methods. The

toolkit consists of three contributions: a suite of

interpretation techniques implemented for broad

classes of models, model- and task-agnostic APIs

for developing new interpretation methods (e.g.,

APIs to obtain input gradients), and reusable front-

end components for interactively visualizing the

interpretations.

AllenNLP Interpret has numerous use cases.

Our external website shows demos of:

• Uncovering Model Biases: A SQuAD model

relies on lexical overlap between the words in

the question and the passage. Alternatively, a

textual entailment model infers contradiction on

observing the word “politics” in the hypothesis.

• Finding Decision Rules: A named entity recog-

nition model predicts the location tag when it

sees the phrase “in downtown”.

• Diagnosing Errors: A sentiment model incor-

rectly predicts the positive class due to the tri-

gram “tony hawk style”.

2 Interpreting Model Predictions

This section introduces an end user’s view of our

toolkit, i.e., the available interpretations, models,

and visualizations.

2.1 What Are Instance-Level Interpretations

AllenNLP Interpret focuses on two types of inter-

pretations: gradient-based saliency maps and ad-

versarial attacks. We choose these methods for

their flexibility—gradient-based methods can be

applied to any differentiable model.

Saliency maps explain a model’s prediction

by identifying the importance of the input to-

kens. Gradient-based methods determine this im-

portance using the gradient of the loss with respect

to the tokens (Simonyan et al., 2014).

Adversarial attacks provide a different lens into

a model—they elucidate its capabilities by exploit-

ing its weaknesses. We focus on methods that

modify tokens in the input (e.g., replace or remove

tokens) in order to change the model’s output in a

desired manner.

2.2 Saliency Map Visualizations

We consider three saliency methods. Since our

goal is to interpret why the model made its pre-

diction (not the ground-truth answer), we use the

model’s own output in the loss calculation. For

each method, we reduce each token’s gradient

(which is the same dimension as the token embed-

ding) to a single value by taking the L2 norm.

Vanilla Gradient This method visualizes the

gradient of the loss with respect to each token (Si-

monyan et al., 2014). Figure 2 shows an example

interpretation of BERT (Devlin et al., 2019).

Integrated Gradients Sundararajan et al.

(2017) introduce integrated gradients. They

define a baseline x
′, which is an input absent

of information (we use a sequence of all zero

embeddings). Word importance is determined by

integrating the gradient along the path from this

baseline to the original input.

SmoothGrad Smilkov et al. (2017) average the

gradient over many noisy versions of the input.

For NLP, we add small Gaussian noise to every

embedding and take the average gradient value.

2.3 Adversarial Attacks

We consider two adversarial attacks: replacing

words to change the model’s prediction (HotFlip)

and removing words to maintain the model’s pre-

diction (Input Reduction).

Untargeted & Targeted HotFlip We consider

word-level substitutions using HotFlip (Ebrahimi

et al., 2018). HotFlip uses the gradient to swap

out words from the input in order to change the

model’s prediction. It answers a sensitivity ques-

tion: how would the prediction change if certain

words are replaced? We also extend HotFlip to

a targeted setting, i.e., we substitute words in or-

der to change the model’s prediction to a specific

target prediction. This answers an almost counter-

factual question: what words should be swapped

in order to cause a specific prediction?

We closely follow the original HotFlip algo-

rithm: replace tokens based on a first-order Taylor
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